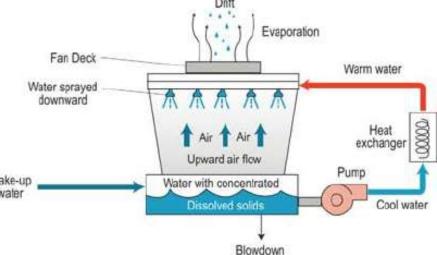
Green Approach to Cooling Water Management

Innovative Polymers Pte Ltd (Singapore)

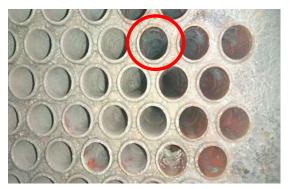
By: B.K Ng

Patent No: PCT/SG2012/000420

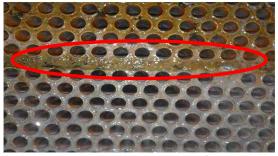
Agenda


- 1. Principles of Cooling Water Management
- 2. Innovation of DCI Technology
- 3. Successful Field Implementations and Performance
- 4. Site Installations
- 5. DCI Benefits

1. Principles of Cooling Water Management


Cooling Water Management

- Evaporation cools the recirculation water
- Evaporation increases the solid concentration
- Water and air borne bacteria causes Bio-fouling

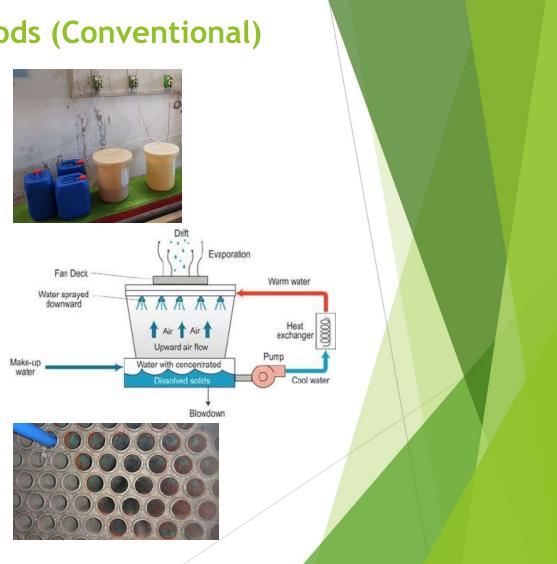


Problems Encountered

Scaling

Bacteria - Bio Fouling

Corrosion


- Scaling and Bio-Fouling impedes heat transfer in the chiller condenser tubes
- Due to inefficiency in heat transfer, chiller system consume more energy

Chiller System

Cooling Water Treatment Methods (Conventional)

- Chemical Treatment
 - Not Environmental Friendly
 - Hazardous
 - ► Tedious Control (Due to inconsistent load)
- Conductivity Control Blow Down
 - Assumption control
 - Water Wastage
- Physical Cleaning
 - Costly
 - Down Time

2. Innovation of DeCalonTM (DCI) Technology Confidential

DCI Description & Objective

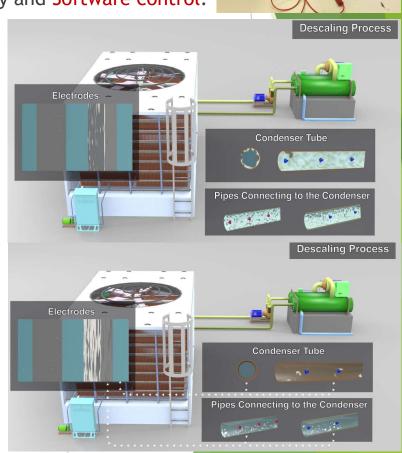
▶ DeCalonTM (DCI), is first of its' kind, patented revolutionary approach to eliminating scale, preventing corrosion and bio-fouling in cooling water systems

► The objective of DCI is to save energy, water and chemicals in cooling water management

Changing the way we treat water!

DeCalon System

- ► Invented in Singapore
- ► Patented Technology
- ► Started in 2014
- More Than 120 Installations World Wide

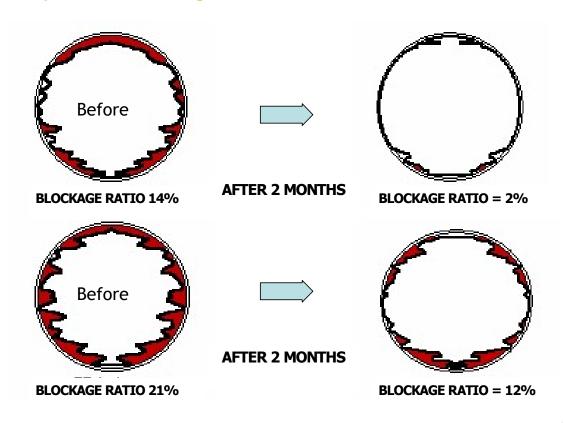

Innovation of the DCI Technology

Through Electrochemistry, CataGreenTM anti-bio technology and Software control:

▶DCI dissolves the <u>existing scales from the pipe</u>, cooling tower and heat exchanger and <u>prevents further scale</u> <u>formation</u> due to evaporation continuously.

▶DCI prevents corrosion by <u>removing the Dissolved</u> <u>Oxygen</u> (lowers ORP) and creates an alkaline environment. (pH Control)

DCI's proprietary non-chemical <u>CataGreenTM disinfects</u> water to prevent bio-fouling, algae, heterotrophic and <u>Legionella bacteria</u>.



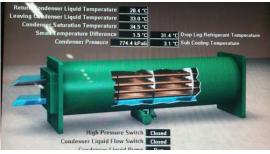
CataGreenTM

- A proprietary non chemical device to enhance the DCI's performance
- ▶ It also disinfects the Heterotrophic and Legionella bacteria to <100,000 and <10 cfu/ml respectively.
- ► DCI + CataGreen = Chemical Free Approach for Cooling Water Management

Diagrams (by Gamma Ray) indicate tube blockage and followed by reduction after 2 months of exposure to the Electrolytic Descaling Process

Comparison

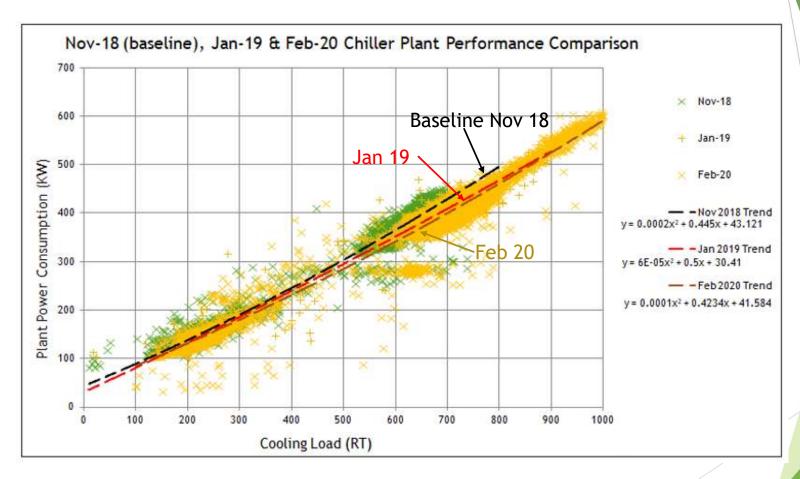
Functionality	DeCalon (DCI)	Chemical Treatment	Ball Technique System	Auto Brush System
Ability to Clean the Entire Cooling Circuitry (Condenser Loop)	✓	Prevention Only	х	x
Removal of Existing Hard Scales	✓	X	х	X
Corrosion Prevention	✓	✓	X	X
Treatment Approach	Prevent & Cure	Prevention	Cure	Cure
Ease of Operation and Maintenance	✓	x	x	x
Periodical Washing & Chemical Cleaning	Reduced	Frequent	Frequent	Frequent
Clean and Green Technology	✓	Х	х	x



3. Successful Field Implementation and Performance

Performance Indicator

- ► Chiller Efficiency (kW/Ton)
- ► Condenser Approach Temp.
- ▶ kW usage (Power Consumption)
- ► C.T Blow Down Water


DCI in Keppel Bay Tower, Singapore

Toward Super Low Energy Building (SLEB) Status

Chiller Performance @Keppel Bay Tower

Data Analytics by IPMVP Standards

KBT's Main Findings

Based on International Performance Measurement & Verification Protocol (IPMVP Vol 1),

KBT's Chiller Plant Performance (different from Chiller Performance) in Nov-18, Jan-19 & Feb-20 @ 784RT (70% load) is as follows:

► Nov-18 (Baseline-No DCI) @ 70% load

▶0.619 kW/RT (Baseline)

▶Jan-19 @ 70% load after 2 months

▶ 0.584 kW/RT, Power Saving = 5.65%

► Feb-20 @ 70% load after 14 months

▶ 0.575 kW/RT, Power Saving = 7.10%

Bacteria Control @Keppel Bay Tower Singapore

Keppel BayTower

Cooling Tower	C.	T1	C.	T2	C	T3	C.	T4	СТ	4A
Bacteria	НВ	LB	НВ	LB	НВ	LB	НВ	LB	НВ	LB
1/11/2018,baseline	2900								2	
Dec-18	170	ND				,				
Jan-19	68	ND	83	ND	63	ND	16	ND	6	ND
Feb-19	330	ND	200	ND	190	ND	450	ND	220	ND
Mar-19	810	NT	3400	NT	770	NT	1900	NT	340	NT
Apr-19	110	NT	280	NT	250	NT	400	NT	170	NT
May-19	310	ND	340	ND	320	ND	38	ND	17	ND
Jun-19	130	ND	130	ND	110	ND	1400	ND	870	ND

HB = Heterotrophic Bacteria Count,

Control limit < 100,000 CFU/ml

LB = Legionella Bacteria Count

Control limit < 10 CFU/ml

ND = Not Detectable

NT = Not Tested

Corrosion Control @Keppel Bay Tower Singapore

Date Started : 18 Jan 2019

Date Completed: 18 Jul 2019

: 6 months Test Duration

Test Report : By an accredited lab

CDA122 Copper

C1010 Mild Steel

< 1.0 MPY

Coupon Metallurgy	Coupon Part No.	Serial No.	Weight New (gram)	Weight After (gram)	Weight Difference (gram)
C1010 Mild Steel	CO1733750104100	121	9.7553	9.5765	0.1788
CDA122 Copper	CO17342101104100	011	11.0287	11.0230	0.0057

Mild steel corrosion rate = 1.18 MPY Std ind mild steel spec < 3.0 MPY Copper corrosion rate = 0.03 MPYStd ind copper spec

MPY = Mil Per Year

3M Singapore 2019

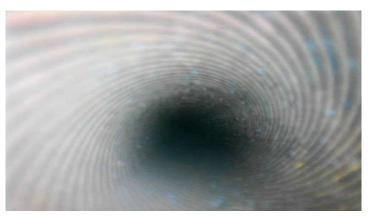
<u>Industry</u>

Production Factory

Chiller Capacity 2000RT

Cooling Purpose

Air Conditioning


Key Performance

- 5% Energy savings
- 50% Blow down water saved
- Zero chemical discharge

3M Singapore 2019

Chiller Tube Scope

Chiller 1 - Chiller Tubes after 10 months operating with DCI system

Malaysia, Johor F&B Factory - 2015

PROCESS COOLING

Industry

Food and Beverages

Cooling Tower Capacity

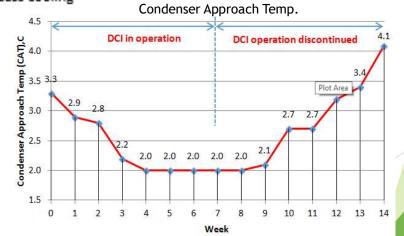
100RT

Chiller Capacity

80RT

Cooling Purpose

Chilled water is supplied to production machines for process cooling


Key Performance

- Estimated energy savings: 77,760 kWh/year

Percent Power Savings : 16.9%
 Water Savings : 88%

- Production Process Improved

Barry Callebaut Malaysia 2017

Industry

Food and Beverages

Cooling Tower Capacity

500RT

Chiller Capacity 300RT

Cooling Purpose

Chilled water is supplied to production machines for process cooling

Key Performance

Estimated energy savings: 150,000 kWh/year

Percent Power Savings : 15.2% Water Savings : 50% **Chemical Savings** : 100%

Philippines, Semi-Conductor Factory -2016

HVAC System

Industry

Semi Conductor

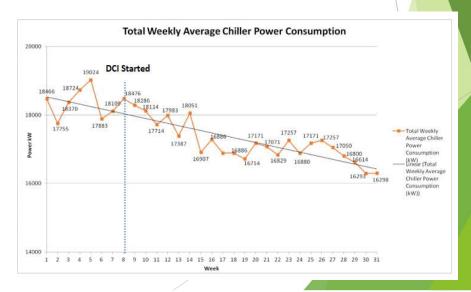
Cooling Tower Capacity

5000RT

Chiller Capacity

2000RT

Cooling Purpose


Air Conditioning

Key Performance

Estimated energy savings: 740,260 kWh/year

Percent Power Savings : 11.2% Water Savings : 27% Chemical Savings : 100%

Singapore, SIMTech A*Star Research Lab - 2015

HVAC System

Industry

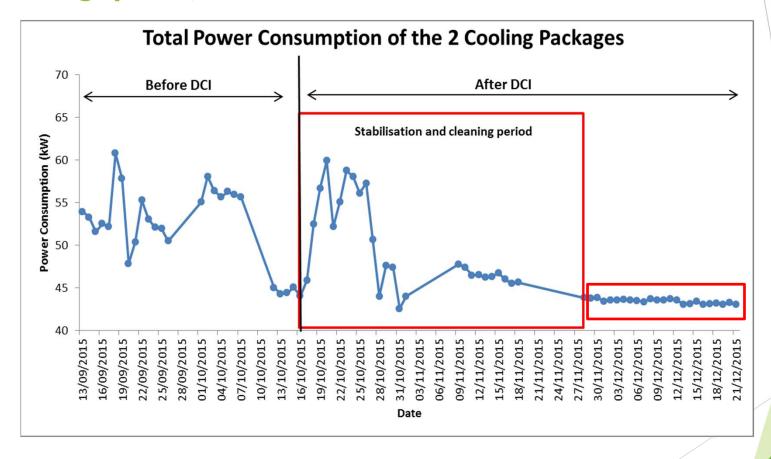
Research Laboratory

Cooling Tower Capacity

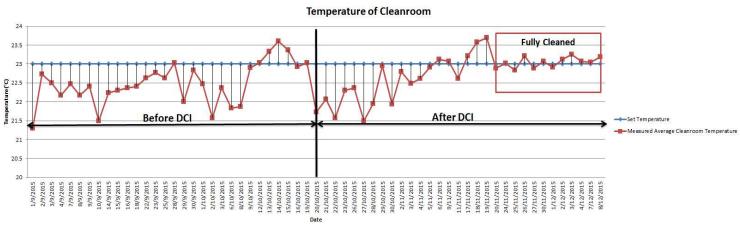
250RT

Chiller Capacity

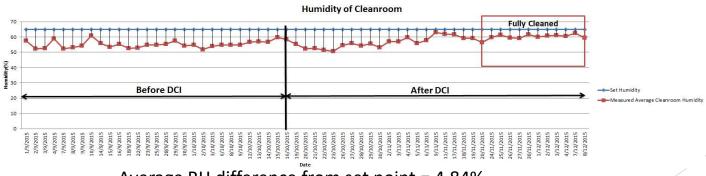
164RT


Cooling Purpose

Chilled water is supplied to AHU for clean room air conditioning


Key Performance

- Estimated energy savings: 80,680kWh/year
- Percent Power Savings : 17.5%


Singapore, SIMTech A*Star - 2015

Singapore, SIMTech A*Star - 2015

Average temp difference from set point = 0.04 °C

Average RH difference from set point = 4.84%

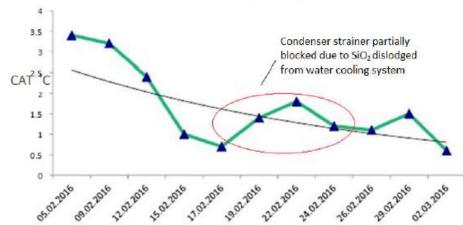
New Zealand, Hospital - 2015

HVAC System

<u>Industry</u> Hospital

Cooling Tower Capacity 200RT

Chiller Capacity 160RT


Cooling Purpose Air Conditioning

Key Performance

Percent Power Savings : 17%
Water Savings : 41%
Chemical Savings : 100%

Confidential

Chiller4 Condenser Approach Temp

Other Sites

Our Customers

Our Distribution Network

Singapore (HQ) New Zealand

Malaysia Australia

Thailand India

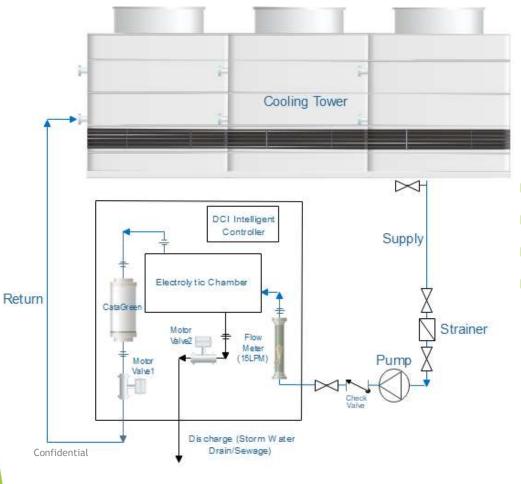
Indonesia Vietnam

Europe Taiwan

USA

Our Credentials

4. Site Installation



Single DCI (Average 350 to 400RT Chiller Capacity)

DCI System Flow Schematic

- Stand alone system
- No shut down required during installation
- Does not interfere with clients' system
- Conductivity control blow-down no longer required (water saving)

5. DCI Benefits

DCI Benefits

- Energy savings between 5% to 25%
 Optimal performance of water-cooled chillers at all time
- ► Water savings > 50%

 Cycle of concentration (COC) will increase due to Minimal Blow-Down
- Chemical savings 100%No hazardous chemicals required
- ► Higher Product Yield & Improved quality

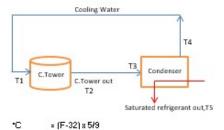
 More efficient cooling
- Increases Productivity

Reduced downtime

Excellent Technology

□ Reduction in CO₂ Emission/ Footprint

☐ True CLEAN AND GREEN


Our Questionnaire

Confidential

DeCaIon Questionnaire for Aircon Application

	,					
1	Chiller operating hours					h/d
	Chiller operating days			5		d /year
2	Chiller/Cooling system configuration	ion	WCPU	Chiller	C.Tower	1
	Unit capacity on duty	(64.0)				RT/unit
	Quantity on duty in parallel	[Units
	Standby quantity		N-5	18		Units
	% average operating load	[%
3	Chiller data			Now	When New	1
	Chiller efficiency @ 100% load					kW/BT
	Chiller Age			i i	1.00	Years
	Chiller type (1= Centrifugal,2=Helical	/Screw,3=Reciprocat	ing,4=othe	rs)	1	Centrifug

4 Temperature data @ above % chiller operating load

= Condenser Approach Temp

CAT

T4	Condenser-out		
T5	Sat Rfgt -out		
	CAT	Now	When New

Location

C.Tower -in C.Tower -out Condenser-in

T5	Sat Rfgt -out		
	CAT	Now	When Ne
	T5-T4		38

Nov

Temp *C

Temp *C

10 Water cost

11 Chiller/Cooling Tower and configuration flow schematic

Pse attach a sketch with this Questionnaire

5	<u>Cooling Tower</u>	V2 12	-0.00
	Cooling Tower water flowrate (recirculation)	US gpm ÷ 4.4 = m³/h	m³/h
	Cycle Of Concentration (COC)	1824	Cycles
	Cooling Water blow-down		m³/mth
	Cooling tower make-up		m³th
6	Water analysis (ppm as CaCO, where applicable)	Make up H₂O Coo	oling H₂O
	pH	1	* 5
	Ca ²⁺		
	Mg^{2}		
	Cl.		
	T.Alkalinity		
	SO ₄ "		
	SiO ₂ as SiO ₂		A.
	Conductivity,uS/cm		
7	Present treatment chemicals used (if any)	State currency	Local currency / rr
В	Heat exchanger/condenser tube yearly		
	cleaning + maintenance cost		Local currency / y
9	Electricity cost (average)		Local currency/kV

Local currency/m³

Q&A

Thank You!

B.K Ng
Bk.ng@innovativepolymers.com
www.decaion.com.sg